9,922 research outputs found

    The "Binarity and Magnetic Interactions in various classes of Stars" (BinaMIcS) project

    Full text link
    The "Binarity and Magnetic Interactions in various classes of stars" (BinaMIcS) project is based on two large programs of spectropolarimetric observations with ESPaDOnS at CFHT and Narval at TBL. Three samples of spectroscopic binaries with two spectra (SB2) are observed: known cool magnetic binaries, the few known hot magnetic binaries, and a survey sample of hot binaries to search for additional hot magnetic binaries. The goal of BinaMIcS is to understand the complex interplay between stellar magnetism and binarity. To this aim, we will characterise and model the magnetic fields, magnetospheric structure and coupling of both components of hot and cool close binary systems over a significant range of evolutionary stages, to confront current theories and trigger new ones. First results already provided interesting clues, e.g. about the origin of magnetism in hot stars.Comment: 4 pages, 2 figures, proceedings of the SF2A conferenc

    Alien Registration- Morin, Joseph E. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/27530/thumbnail.jp

    Hydrologic response of a semi-arid watershed to spatial and temporal characteristics of convective rain cells

    Get PDF
    Rain can be measured and represented in many ways such as point data from rain gauges, grid data from meteorological radar, or interpolated data. In this paper we represent rain fields by implementing a rain cell model of convective rain cells. The rain fields are used as an input to a hydrological model to test the watershed response to spatial and temporal characteristics of the rain cells. As a case study we tested an extreme storm event over a semi-arid watershed in southern Israel. The rain cell model was found to simulate the rain storm adequately. The use of these modeled cells allowed us to test the sensitivity of the watershed hydrological response to rain cell characteristics and it was found that the watershed is mainly sensitive to the starting location of the rain cell. Relatively small changes in the rain cell's location, speed and direction may increase watershed peak discharge by three-fold

    Approximating optimization problems over convex functions

    Get PDF
    Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in Hk(Ω)H^k(\Omega), and optimizing functionals arising from some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and functions with positive semidefinite discrete Hessian need not be convex in a discrete sense. Previous work has concentrated on non-local descriptions of convexity, making the number of constraints to grow super-linearly with the number of nodes even in dimension 2, and these descriptions are very difficult to extend to higher dimensions. In this paper we propose a finite difference approximation using positive semidefinite programs and discrete Hessians, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using semidefinite programming codes, we show concrete examples of approximations to problems in two and three dimensions
    corecore